Edgar´s new paper in Advanced Science

https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202104977

There is a growing demand to attain organic materials with high electron mobility, μe, as current reliable reported values are significantly lower than those exhibited by their hole mobility counterparts. Here, it is shown that a well-known nonfullerene-acceptor commonly used in organic solar cells, that is, BTP-4F (aka Y6), enables solution-processed organic thin-film transistors (OTFT) with a μe as high as 2.4 cm2 V−1 s−1. This value is comparable to those of state-of-the-art n-type OTFTs, opening up a plethora of new possibilities for this class of materials in the field of organic electronics. Such efficient charge transport is linked to a readily achievable highly ordered crystalline phase, whose peculiar structural properties are thoroughly discussed. This work proves that structurally ordered nonfullerene acceptors can exhibit intrinsically high mobility and introduces a new approach in the quest of high μe organic materials, as well as new guidelines for future materials design.

In Jaime Martín, PhD we use our own and third party cookies to make sure everything works properly. For more information visit our cookie policy. You can accept all cookies by clicking on the "Accept" button or customize your choice by clicking on CONFIGURE OR REJECT.